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This is a shortened version|no proofs|of an up
oming paper.
A Conventional Authenti
ated-En
ryption ModeM. Bellare� P. Rogawayy D. WagnerzApril 13, 2003Abstra
tWe propose a blo
k-
ipher mode of operation, EAX, for authenti
ated-en
ryption with asso
iated-data (AEAD). Given a non
e N , a message M , and a header H, the mode prote
ts the priva
y of Mand the authenti
ity of both M and H. Strings N;M;H 2 f0; 1g� are arbitrary, and the mode uses2dM=ne+ dH=ne+ dN=ne blo
k-
ipher 
alls when these strings are nonempty and n is the blo
k lengthof the underlying blo
k 
ipher. Among EAX's 
hara
teristi
s are that it is on-line (the length of a messageisn't needed to begin pro
essing it) and a �xed header 
an be pre-pro
essed, e�e
tively removing theper-message 
ost of binding it to the 
iphertext. EAX is obtained by instantiating a simple generi
-
omposition method, EAX2, and then 
ollapsing its two keys into one. EAX is provably se
ure under astandard 
omplexity-theoreti
 assumption. EAX is an alternative to CCM [19℄, and is likewise patent-free.1 Introdu
tionAE and AEAD. Authenti
ated en
ryption (AE) s
hemes are symmetri
-key me
hanisms by whi
h a mes-sage M is a transformed into a 
iphertext C in su
h a way that C prote
ts both priva
y and authenti
ity.Though AE s
hemes go ba
k more than 20 years, only re
ently did AE get re
ognized as a distin
t andsigni�
ant 
ryptographi
 goal [6, 7, 12℄. Two fa
tors seem to have triggered this. First was the realizationthat people had been doing rather poorly when they tried to glue together a traditional (priva
y-only) en-
ryption s
heme and a message authenti
ation 
ode (MAC) [5, 6, 14℄; se
ond was the emergen
e of a 
lass ofAE s
hemes [11, 17℄ that did not work by gluing together an en
ryption s
heme and a MAC.Following the emergen
e of new AE s
hemes and the analysis of old ones, it was realized that often timesnot all the data should be en
rypted|in many appli
ations we have a mixture of se
ret and non-se
ret data,and it would be ni
e to have a mode of operation that provides priva
y for the se
ret data and authenti
ity forboth types of data. Thus was born the notion of authenti
ated-en
ryption with asso
iated-data (AEAD) [16℄.The non-se
ret data is 
alled the asso
iated data or the header.This do
ument. In this note we propose a new AEAD s
heme, 
alled EAX. The me
hanism is a \
on-ventional" AEAD s
heme, meaning a method that, using a blo
k 
ipher, makes two passes, one aimed ata
hieving priva
y and one aimed at a
hieving authenti
ity. Within this spa
e of 
onventional s
hemes, wewant to do as well as possible. Doing well entails issues of eÆ
ien
y, simpli
ity, elegan
e, patent avoidan
e,ease of 
orre
t use, and provable-se
urity guarantees.History and related work. The AEAD s
heme known as CCM was re
ently proposed by Whiting,Housley, and Ferguson [19℄. By spe
ifying a 
onventional, two-pass AEAD s
heme, the CCM authors aimedto avoid the Intelle
tual Property (IP) asso
iated to the new, priva
y-and-authenti
ity-melded s
hemes. ButCCM embodies limitations that have nothing to do with the IP that it works to avoid. A note 
losely relatedto the 
urrent one dis
usses these limitations [18℄. The 
urrent note was motivated by a desire to �x theissues identi�ed in CCM while staying within its two-pass (patent-avoiding) framework.� Department of Computer S
ien
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Algorithm CBCK (M)10 Let M1 � � �Mm  M where jMij = n11 C0  0n12 for i 1 to m do13 Ci  EK(Mi�Ci�1)14 return Cm
Algorithm CTRNK (M)20 m djM j=ne21 S  EK(N) kEK(N+1) k � � � kEK(N+m�1)22 C  M � S [�rst jM j bits℄23 return CAlgorithm pad (M ; B;P )30 if jM j 2 fn; 2n; 3n; : : :g31 then return M �! B,32 else return (M k 10n�1�(jMj mod n)) �! P Algorithm OMACK (M)40 L EK(0n); B  2L; P  4L41 return CBCK(pad (M ; B;P ))Algorithm OMAC tK (M)50 return OMACK([t℄n kM)Figure 1: Basi
 building blo
ks. The blo
k 
ipher E : Key � f0; 1gn ! f0; 1gn is �xed and K 2 Key. For CBC,M 2 (f0; 1gn)+. For CTR, M 2 f0; 1g� and N 2 f0; 1gn. For pad, M 2 f0; 1g� and B;P 2 f0; 1gn and �! xors theshorter string into the end of longer one. For OMAC, M 2 f0; 1g� and t 2 [0::2n � 1℄ and the multipli
ation of a numberby a string L is done in GF(2n).2 PreliminariesAll strings in this note are over the binary alphabet f0; 1g. For L a set of strings and n � 0 a number, welet Ln and L� have their usual meanings. The 
on
atenation of strings X and Y is denoted X kY or simplyXY . The string of length 0, 
alled the empty string, is denoted ". If X 2 f0; 1g� we let jX j denote its length,in bits. If X 2 f0; 1g� and ` � jX j then the �rst ` bits of X are denoted X [�rst ` bits℄. When X 2 f0; 1gnis a nonempty string and t 2 N is a number we let X+ t be the n-bit string that results from regarding Xas a nonnegative number x (binary notation, most-signi�
ant-bit �rst), adding x to t, taking the resultmodulo 2n, and 
onverting this number ba
k into an n-bit string. If t 2 [0::2n � 1℄ we let [t℄n denote theen
oding of t into an n-bit binary string (msb �rst, lsb last). If X and P are strings then we let X �! P (thexor-at-the-end operator) denote the string of length ` = maxfjX j; jP jg bits that is obtained by prepending��jX j � jP j�� zero-bits to the shorter string and then xoring this with the other string. (In other words, xorthe shorter string into the end of the longer string.) A blo
k 
ipher is a fun
tion E : Key�f0; 1gn ! f0; 1gnwhere Key is a �nite, nonempty set and n � 1 is a number and EK(�) = E(K; �) is a permutation on f0; 1gn.The number n is 
alled the blo
k length. Throughout this note we �x su
h a blo
k 
ipher E.In Figure 1 we de�ne the algorithms CBC, CTR, pad, OMAC (no supers
ript), and OMAC � (withsupers
ript). The algorithms CBC (the CBC MAC) and CTR (
ounter-mode en
ryption) are standard.Algorithm pad is used only to de�ne OMAC. Algorithm OMAC [9℄ is a pseudorandom fun
tion (PRF) thatis a one-key variant of the algorithm XCBC [8℄. Algorithm OMAC � is like OMAC but takes an extraargument, the integer t. This algorithm is a \tweakable" PRF [15℄, tweaked in the most simple way possible.We explain the notation used in the de�nition of OMAC. The value of iL (line 40: i an integer in f2; 4gand L 2 f0; 1gn) is the n-bit string that is obtained by multiplying L by the n-bit string that represents thenumber i. The multipli
ation is done in the �nite �eld GF(2n), using a 
anoni
al polynomial to represent�eld points. For n = 128 we use the polynomial x128+ x7+ x2+ x+1. In that 
ase, 2L = L<<1 if the �rst bitof L is 0 and 2L = (L<<1)� 012010000111 otherwise, where L<<1 means the left shift of L by one position(the �rst bit vanishing and a zero entering into the last bit). The value of 4L is simply 2(2L).We have made a small modi�
ation to the OMAC algorithm as it was originally presented, 
hanging oneof its two 
onstants. Spe
i�
ally, the 
onstant 4 at line 40 was the 
onstant 1=2 (the multipli
ative inverseof 2) in the original de�nition of OMAC [9℄. The OMAC authors indi
ate that they will promulgate thismodi�
ation [10℄, whi
h slightly simpli�es implementations.2
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3 EAX GoalsWe wanted a blo
k-
ipher-based, non
e-using AEAD s
heme. It should provide both priva
y, in the senseof indistinguishability from random bits, and integrity, in the sense of an adversary's inability to produ
e anew but valid (non
e, header, 
iphertext) triple [16℄. Nothing should be assumed about the non
es ex
eptthat they are non-repeating. Se
urity must be demonstrated using the standard, provable-se
urity approa
h.The s
heme should employ no tool beyond a blo
k 
ipher E : Key � f0; 1gn ! f0; 1gn that it is based on.We should assume nothing about E beyond its se
urity in the sense of a pseudorandom permutation (PRP).We expe
t that E will often be instantiated by AES, but we should make no restri
tions in this dire
tion(su
h as insisting that n = 128). The s
heme should be simple and natural (so, in parti
ular, it should avoid
ompli
ated length-annotation). It should be a \
onventional" AEAD s
heme, making a separate priva
ypass and authenti
ity pass, using no known IP.We wanted our AEAD s
heme to be 
exible in the fun
tionality it provides. It should support arbitrary-length messages: the message spa
e should be f0; 1g�. The key spa
e of the AEAD should be the keyspa
e Key of the underlying blo
k 
ipher. We wanted to support non
es as long as the blo
k length1; thatis, the non
e spa
e should in
lude f0; 1gn. Any tag length � 2 [0::n℄ should be possible, to allow ea
h userto sele
t how mu
h se
urity she wants from the integrity guarantees and how many bits she has to pay forthis.2 The above 
onsiderations imply that the only user-tunable parameters should be E and � .We took on some fairly aggressive performan
e goals. First, message expansion should be no morethan required: the length of the 
iphertext (whi
h, following the 
onventions of [17℄, ex
ludes the non
e)should be only � bits more than the length of the plaintext. Implementations should be able to pro�tablypre-pro
ess stati
 asso
iated data; for example, if we have an un
hanging header atta
hed to every pa
ket,authenti
ating this header should have no signi�
ant 
ost after a single pre-
omputation. There should bean eÆ
ient pseudorandom fun
tion (PRF) dire
tly a

essible through the de�ned interfa
e of the AEADs
heme|as eÆ
ient as other 
onventional PRFs. Key-setup should be eÆ
ient and all blo
k-
ipher 
allsshould use the same underlying key, so that we do not in
ur the 
ost of key s
heduling more than on
e.For both en
ryption and de
ryption, we want to use only the forward dire
tion of the blo
k 
ipher, so thathardware implementations do not need to implement the de
ryption fun
tionality of the blo
k 
ipher. Thes
heme should be on-line for both the plaintext M and the asso
iated data H , whi
h means that one 
anpro
ess streaming data on-the-
y, using 
onstant memory, not knowing when the stream will stop.EAX a
hieves all of goals des
ribed above.4 EAX AlgorithmFix a blo
k 
ipher E : Key � f0; 1gn ! f0; 1gn and a tag length � 2 [0::n℄. These parameters should be�xed at the beginning of a parti
ular session that will use EAX mode. Typi
ally, the parameters would beagreed to in an authenti
ated manner between the sender and the re
eiver, or they would be �xed for alltime for some parti
ular appli
ation. Given these parameters, EAX provides a non
e-based AEAD s
hemeEAX[E; � ℄ whose en
ryption algorithm has signature Key � Non
e � Header � Plaintext ! Ciphertext andwhose de
ryption algorithm has signature Key�Non
e�Header�Ciphertext! Plaintext[fInvalidg whereNon
e, Header, Plaintext, and Ciphertext are all f0; 1g�. The EAX algorithm is spe
i�ed in Figure 2 and api
ture illustrating EAX en
ryption is given in Figure 3.5 Dis
ussionNo en
odings. We have avoided any nontrivial en
oding of multiple strings into a single one.3 Someother approa
hes that we 
onsidered required a PRF to be applied to what was logi
ally a tuple, like(N;H;C). Doing this raises en
oding issues we did not want to deal with be
ause, ultimately, there is no1 Here we will over-a
hieve, allowing a non
e spa
e of f0; 1g�.2 Note that sin
e our AEAD s
heme is bit-oriented and not byte-oriented, � is the number of bits, not bytes, of the tag.3 One 
ould view the pre�xing of [t℄n to M in the de�nition of OMAC tK(M) as an en
oding, but [t℄n is a 
onstant, �xed-length string, and the aim here is just to \tweak" the PRF. That is very di�erent from needing to en
ode an arbitrary-lengthmessage M and an arbitrary-length header H into a single string, for example.3
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Algorithm EAX:En
ryptN HK (M)10 N OMAC 0K(N)11 H OMAC 1K(H)12 C  CTRNK(M)13 C OMAC 2K(C)14 Tag  N�C�H15 T  Tag [�rst � bits℄16 return C C k T
Algorithm EAX:De
ryptN HK (C)20 if jCj < � then return Invalid21 Let C k T  C where jT j = �22 N OMAC 0K(N)23 H OMAC 1K(H)24 C OMAC 2K(C)25 Tag 0  N�C�H26 T 0  Tag 0 [�rst � bits℄27 if T 6= T 0 then return Invalid28 M  CTRNK(C)29 return MFigure 2: En
ryption and de
ryption under EAX mode. The plaintext is M , the 
iphertext is C, the key is K, the non
eis N , and the header is H. The mode depends on a blo
k 
ipher E (that CTR and OMAC impli
itly use) and a taglength � .

N

T

OMAC 0K
C

HM
N

HC
CTRK OMAC 1K
OMAC 2K

Figure 3: En
ryption under EAX mode. The message is M , the key is K, and the header is H. The 
iphertext is C k T .
4
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CCM EAXFun
tionality Authenti
ated En
ryption with AD Authenti
ated En
ryption with ADBuilt from Blo
k 
ipher E with 128-bit blo
ksize Blo
k 
ipher E with n-bit blo
ksizeParameters Blo
k 
ipher ETag length � 2 f4; 6; 8; 10; 12; 14; 16gLength of msg length �eld � 2 [2::8℄ Blo
k 
ipher ETag length � 2 [0::n℄Message spa
e Parameterized: 7 
hoi
es: � 2 [2::8℄.Ea
h possible message spa
e a sub-set of Byte�, from Byte216�1 toByte<264�1 f0; 1g�Non
e spa
e Parameterized, with a value of 15��bytes. From 56 bits to 104 bits f0; 1g�Key spa
e One blo
k-
ipher key One blo
k-
ipher keyCiphertext expansion � bytes � bitsBlo
k-
ipher 
alls 2 l jMj128 m+l jHj128m+2+ Æ, for Æ 2 f0; 1g 2 l jMjn m+ l jHjn m+ l jNjn mBlo
k-
ipher 
allswith stati
 header 2 l jMj128 m+l jHj128m+2+ Æ, for Æ 2 f0; 1g 2 l jMjn m+ l jNjn mKey setup Blo
k 
ipher subkeys Blo
k 
ipher subkeys3 blo
k-
ipher 
allsIV requirements Non-repeating non
e Non-repeating non
eParallelizable? No NoOn-line? No YesPrepro
essing (/msg) Limited (key stream only) Limited (key stream and header only)Memory rqmts Small 
onstant Small 
onstantProvable se
urity? Yes: redu
tion from blo
k-
ipher'sPRP se
urity, bound of �(�2=2128) Yes: redu
tion from blo
k-
ipher'sPRP se
urity, bound of �(�2=2n)Patent-en
umbered? No NoFigure 4: A 
omparison of basi
 
hara
teristi
s of CCM and EAX.eÆ
ient, 
ompelling, on-line way to en
ode multiple strings into a single one. Alternatively, one 
ould avoiden
odings and 
onsider a new kind of primitive, a multi-argument PRF. But this would be a non-standardtool and we didn't want to use any non-standard tools. All in all, it seemed best to �nd a way to sidestepthe need to do en
odings, whi
h is what we have done.Why not generi
 
omposition? Why have we spe
i�ed a blo
k-
ipher based (BC-based) AEAD s
hemeinstead of following the generi
-
omposition approa
h of 
ombining a (priva
y-only) en
ryption method anda message authenti
ation 
ode? There are reasonable arguments in favor of generi
 
omposition, based onaestheti
 or ar
hite
tural sensibilities. One 
an argue that generi
 
omposition better separates 
on
eptuallyindependent elements (priva
y and authenti
ity) and, 
orrespondingly, allows greater implementation 
exi-bility [6, 14℄. Corre
tness be
omes mu
h simpler and 
learer as well. The argument does have validity. Still,BC-based AEAD modes have some important advantages. BC-based AEAD enables improved eÆ
ien
y(the strand of work not represented here but found in [11, 17℄) and makes it easier to use a 
ryptosystem
orre
tly and interoperably|for example, presenting a more dire
tly useful API for developers. BC-basedAEAD redu
es the risk that implementors will 
hoose inse
ure parameters. It makes it easier for implemen-tors to use a s
heme without knowing a lot of 
ryptography. It saves on key bits and key-setup time, asgeneri
-
omposition methods invariably require a pair of separate keys. Finally, it was a goal of this work5
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to mat
h or beat the 
hara
teristi
 of CCM [19℄, and that meant doing a BC-based AEAD s
heme.All of that said, EAX 
an be viewed as having been derived from a generi
-
omposition s
heme we 
allEAX2, des
ribed in Se
tion 7. Spe
i�
ally, one instantiates the generi
-
omposition s
heme EAX2 withCTR mode (
ounter mode) and OMAC, and then 
ollapses the two keys into one. If one does favor generi

omposition, EAX2 is a ni
e algorithm for it.Why a 
onventional (two-pass) s
heme? Having de
ided to give a BC-based AEAD s
heme, whysti
k to a 
onventional (i.e., two-pass) one, avoiding the line of work that starts with [11℄? This 
hoi
e isdiÆ
ult to justify for any reason beyond patent-avoidan
e. We have not attempted to do so.Comparing CCM and EAX. In Figure 4 we 
ompare some of the properties of CCM[19℄ and EAX. The
ount on blo
k-
ipher 
alls for EAX ignores key-setup 
osts. By the set Byte we mean f0; 1g8.Other 
omments. Among the bene�ts of following what is basi
ally an en
rypt-then-authenti
ate approa
his that invalid messages 
an be reje
ted with half the work of an authenti
ate-then-en
rypt approa
h.To obtain a MAC as eÆ
ient as the underlying PRF, use MACK(H) = En
rypt0nHK (").In CCM [19℄ the tag-length parameter is authenti
ated. We have 
hosen not to do this be
ause it isunne
essary to a
hieve our notion of se
urity. Re
all that the tag length, like the blo
k-
ipher itself, shouldbe �xed and agreed-to, in an authenti
ated way, at the beginning of a session. It is a usage error to 
hangeparameters in the middle of a session. In light of this, authenti
ating the tag length has no known bene�t.Many appli
ations won't 
are if their AE s
heme is on-line|they know the length of the message inadvan
e. Many appli
ations won't 
are if they 
an pre-pro
ess a stati
 header|perhaps the header is just afew blo
ks anyway. And so forth. Nothing we have done mandates the use of any novel feature of the provideds
heme. The point is to enable it. The de�ning 
hara
teristi
 of a general-purpose mode of operation isthat it is general purpose|we 
an't anti
ipate what will be of primary 
on
ern to the appli
ation, and sowe need to try to anti
ipate the attributes that an appli
ation may �nd desirable and make sure that thealgorithm itself doesn't stand in the way.Finally, where does the name EAX 
ome from? It stands for en
rypt-then-authenti
ate-then-translate.Clearly we had problems with the spelling of \translate".6 Intelle
tual Property StatementThe authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We do notintend to apply for any patents 
overing this te
hnology. Our work for this note is hereby pla
ed in thepubli
 domain. As far as we know, EAX is free and unen
umbered for all uses.7 EAX2 AlgorithmThis se
tion is not ne
essary to understand or implement EAX, but it is ne
essary for understanding theproof of EAX as well as the general approa
h taken for its design. That approa
h has been to �rst designa generi
-
omposition s
heme, EAX2, and then \
ollapse" to a single key for the parti
ular 
ase of CTRen
ryption and OMAC authenti
ation.EAX2 
omposition. Let F : Key1� f0; 1g� ! f0; 1gn be a PRF, where n � 2. Let � = (E ;D) be an IV-based en
ryption s
heme having key spa
e Key2 and IV spa
e f0; 1gn. This means that E : Key2�f0; 1gn�f0; 1g� ! f0; 1g� and D : Key2�f0; 1gn�f0; 1g� ! f0; 1g� and Key2 is a set of keys and for every K 2 Key2and N 2 f0; 1gn and M 2 f0; 1g�, if C = ENK (M) then DNK(C) =M . Let � � n be a number. Now given Fand � and � we de�ne an AEAD s
heme EAX2[�; F; � ℄ = (EAX2:En
rypt;EAX2:De
rypt) as follows. SetF tK(M) = FK([t℄n kM). Set Key = Key1 � Key2. Then the en
ryption algorithm EAX2:En
rypt : Key �f0; 1g��f0; 1g� ! f0; 1g� and the de
ryption algorithm EAX2:De
rypt : Key�f0; 1g��f0; 1g� ! f0; 1g� [fInvalidg are de�ned in Figure 5 and the former is illustrated in Figure 6. EAX2[�; F; � ℄ is provably se
ureunder natural assumptions about � and F . See the full version of this paper.6
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Algorithm EAX2:En
ryptN HK1;K2 (M)10 N F 0K1(N)11 H F 1K1(H)12 C  ENK2(M)13 C F 2K1(C)14 Tag  N�C�H15 T  Tag [�rst � bits℄16 return C C k T
Algorithm EAX2:De
ryptN HK1;K2 (C)20 if jCj < � then return Invalid21 Let C k T  C where jT j = �22 N F 0K1(N)23 H F 1K1(H)24 C F 2K1(C)25 Tag 0  N�C�H26 T 0  Tag 0 [�rst � bits℄27 if T 6= T 0 then return Invalid28 M  DNK2(C)29 return MFigure 5: The generi
 
omposition s
heme EAX2[�; F; � ℄. The s
heme is build from a PRF F : Key1�f0; 1g� ! f0; 1gnand an IV-based en
ryption s
heme � = (E ;D) having key spa
e Key2 and message spa
e f0; 1g�.

N
C

HM
N

HC
T

F 0K1 F 1K1
F 2K1
EK2

Figure 6: En
rypting under EAX2. The plaintext is M and the key is (K1; K2) and the header is H. The 
iphertext isC k T . By F iK we mean the fun
tion where F iK(M) = FK([i℄n kM).
7
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EAX1 
omposition. Let EAX1 be the single-key variant of EAX2 where one insists that Key1 = Key2 andwhere one keys F , E , and D with a single keyK 2 Key = Key1 = Key2. That is, one asso
iates to F and �, asabove, the s
heme EAX1[�; F; � ℄ that is de�ned as with EAX2 but where the key spa
e is Key = Key1 = Key2and the one key K keys everything. Noti
e that EAX[E; � ℄ = EAX1[CTR[E℄;OMAC[E℄; � ℄. This is a usefulway to look at EAX.8 Se
urity TheoremEAX is a provably se
ure AEAD s
heme if the underlying blo
k 
ipher is a se
ure pseudorandom permutation(PRP). Proofs have been omitted from the 
urrent writeup. The full paper, to be released soon, will in
ludethem.9 A
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A Re
ommended APISome important features of EAX 
an only be utilized if one a

esses EAX fun
tionality through an appropri-ate user interfa
e. In this se
tion we therefore put forward an API that permits (a) in
remental en
ryption,(b) in
remental de
ryption, (
) authenti
ity veri�
ation without 
iphertext re
overy, and (d) stati
 headerswith negligible per-message 
ost. Providing of these features results in an API that is a bit more elaboratethan some programmers may want or need, so we also in
lude some simpler, \all-in-one" 
alls./** We provide two interfa
es:* 1. A simple interfa
e that does not support streaming data.* 2. An in
remental interfa
e that supports streaming data.* See below for do
umentation on both.*//********************************************************************** -- How to en
rypt, the simplified interfa
e --* First, 
all* eax_init()* to setup the key and set the parameters.* Then, for ea
h pa
ket, 
all* eax_en
rypt()* When all done, 
all* eax_zeroize()********************************************************************** -- How to de
rypt, the simplified interfa
e --* First, 
all* eax_init()* to setup the key and set the parameters.* Then, for ea
h pa
ket:* eax_de
rypt()* When all done, 
all* eax_zeroize()* It is the 
aller's responsibility to 
he
k tag validity* by examining the return value of eax_de
rypt().********************************************************************//********************************************************************** -- How to en
rypt, in
rementally --* First, 
all* eax_init()* to setup the key and set the parameters.* Then, for ea
h pa
ket, 
all* eax_provide_non
e()* {eax_provide_header(), eax_
ompute_
iphertext()}** eax_
ompute_tag()* Here {x,y} means x or y, and z* means any number of iterations of z.* When all done, 
all* eax_zeroize()** Note that en
ryption 
an be done on the fly, and header and message data* may be provided in any order and in arbitrary 
hunks.********************************************************************** -- How to de
rypt, in
rementally --* First, 
all* eax_init()* to setup the key and set the parameters.* Then, for ea
h pa
ket: 10
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* eax_provide_non
e()* {eax_provide_header(), eax_provide_
iphertext()}** eax_
he
k_tag()* eax_
ompute_plaintext() // only do this if tag was valid* When all done, 
all* eax_zeroize()* Note that de
ryption may be done on the fly, and header and message data* may be provided in any order and in arbitrary 
hunks.* It is the 
aller's responsibility to 
he
k tag validity* by examining the return value of eax_
he
k_tag().********************************************************************/typedef enum {AES128,AES192,AES256} blo
k_
ipher; /* "standard" 
iphers */typedef unsigned 
har byte;typedef void eax_state; /* EAX 
ontext; opaque *//********************************************************************** Calls 
ommon to in
remental and non-in
remental API********************************************************************//** eax_init** Key and parameter setup to init a EAX 
ontext data stru
ture.* If you don't know what to pass for t,E, use t=16, E=AES128.*/eax_state *eax_init(byte* Key, // The key, as a string.unsigned int t, // The tag length, in bytes.blo
k_
ipher E // Enumerated that indi
ates what 
ipher to use.);/** eax_provide_header** Supply a message header. The header "grows" with ea
h 
all* until a eax_provide_header() 
all is made that follows a* eax_en
rypt(), eax_de
rypt(), eax_provide_plaintext(),* eax_provide_
iphertext() or eax_
ompute_plaintext() 
all.* That starts reinitializes the header.*/inteax_provide_header(eax_state *K, // The EAX 
ontext.byte *H, // The header (asso
iated data) (possibly more to 
ome)unsigned int h // having h bytes);/** eax_zeroize** Session is over; destroy all key material and 
leanup!*/voideax_zeroize(eax_state *K // The EAX 
ontext to remove); 11
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/********************************************************************** All-in-one, non-in
remental interfa
e********************************************************************//** eax_en
rypt** En
rypt the given message with the given key, non
e and header.* Spe
ify the header (if nonempty) with eax_provide_header().*/inteax_en
rypt(eax_state *K, // The 
aller provides the EAX 
ontext,byte* N, // the non
e andunsigned int n, // its length (in bytes), andbyte* M, // the plaintext andunsigned int m, // its length (in bytes).byte* C, // The m-byte 
iphertextbyte* T // and the tag T are returned.);/** eax_de
rypt()** De
rypt the given 
iphertext with the given key, non
e and header.* Spe
ify the header (if nonempty) with eax_provide_header().* Returns 1 for a valid 
iphertext, 0 for an invalid 
iphertext.*/inteax_de
rypt(eax_state *K, // The 
aller provides the EAX 
ontext,byte* N, // the non
e andunsigned int n, // its length (in bytes), andbyte* C, // the 
iphertext andunsigned int 
, // its length (in bytes), and thebyte* T, // tag.byte* P // If valid, return the 
-byte plaintext.);/********************************************************************** In
remental interfa
e********************************************************************//** eax_provide_non
e** Provide a non
e. For en
ryption, do this before 
alling* eax_
ompute_
iphertext() and eax_
ompute_tag();* for de
ryption, do this before 
alling* eax_provide_
iphertext(), eax_
he
k_tag, or eax_
ompute_plaintext().*/inteax_provide_non
e(eax_state *K, // The EAX 
ontext,byte* N, // the non
e, and 12
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unsigned int n // the length of the non
e (in bytes).);/** eax_
ompute_
iphertext** En
rypt a message or a part of a message.* The non
e needs already to have been* spe
ified by a 
all to eax_provide_non
e().*/inteax_
ompute_
iphertext( // En
rypt (part of) a messageeax_state *K, // Given a EAX 
ontext Kbyte *M, // and a message M (possibly more to 
ome)unsigned int m, // having m bytes.byte *C // Return a 
iphertext body C also having m bytes.);/** eax_
ompute_tag** Message and header finished: 
ompute the authenti
ation tag that is a part* of the 
omplete 
iphertext.*/inteax_
ompute_tag(eax_state *K, // Given a EAX 
ontextbyte *T // 
ompute the tag T for it.);/** eax_provide_
iphertext** Supply the 
iphertext, or the next pie
e of 
iphertext.* This is used to 
he
k for the subsequent authenti
ity 
he
k eax_
he
k_tag().*/inteax_provide_
iphertext(eax_state *K, // Given a EAX 
ontextbyte *C, // and a 
iphertext C (possibly more to 
ome)unsigned int 
 // having 
 bytes.);/** eax_
he
k_tag** The non
e, 
iphertext and header have all been fully provided; 
he
k if* they are valid for the given tag.* Returns 1 for a valid 
iphertext, 0 for an invalid 
iphertext* (in whi
h 
ase plaintext/
iphertext might be zeroized as well).*/inteax_
he
k_tag(eax_state *K, // Given a EAX 
ontext andbyte *T // the tag that a

ompanied the 
iphertext.13
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);/** eax_
ompute_plaintext** Re
over the plaintext from the provided 
iphertext.* A 
all to eax_provide_non
e() needs to pre
ede this 
all.* The 
aller is responsible for separately 
he
king if the 
iphertext is valid.* Normally this would be done before 
omputing the plaintext with* eax_
ompute_plaintext().*/inteax_
ompute_plaintext(eax_state *K, // Given a EAX 
ontextbyte *C, // and a 
iphertext C (possibly more to 
ome)unsigned int 
, // having 
 bytes,byte *M // return the 
orresponding 
 bytes of plaintext.);
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