
www.manaraa.com

This is a shortened version|no proofs|of an upoming paper.
A Conventional Authentiated-Enryption ModeM. Bellare� P. Rogawayy D. WagnerzApril 13, 2003AbstratWe propose a blok-ipher mode of operation, EAX, for authentiated-enryption with assoiated-data (AEAD). Given a none N , a message M , and a header H, the mode protets the privay of Mand the authentiity of both M and H. Strings N;M;H 2 f0; 1g� are arbitrary, and the mode uses2dM=ne+ dH=ne+ dN=ne blok-ipher alls when these strings are nonempty and n is the blok lengthof the underlying blok ipher. Among EAX's harateristis are that it is on-line (the length of a messageisn't needed to begin proessing it) and a �xed header an be pre-proessed, e�etively removing theper-message ost of binding it to the iphertext. EAX is obtained by instantiating a simple generi-omposition method, EAX2, and then ollapsing its two keys into one. EAX is provably seure under astandard omplexity-theoreti assumption. EAX is an alternative to CCM [19℄, and is likewise patent-free.1 IntrodutionAE and AEAD. Authentiated enryption (AE) shemes are symmetri-key mehanisms by whih a mes-sage M is a transformed into a iphertext C in suh a way that C protets both privay and authentiity.Though AE shemes go bak more than 20 years, only reently did AE get reognized as a distint andsigni�ant ryptographi goal [6, 7, 12℄. Two fators seem to have triggered this. First was the realizationthat people had been doing rather poorly when they tried to glue together a traditional (privay-only) en-ryption sheme and a message authentiation ode (MAC) [5, 6, 14℄; seond was the emergene of a lass ofAE shemes [11, 17℄ that did not work by gluing together an enryption sheme and a MAC.Following the emergene of new AE shemes and the analysis of old ones, it was realized that often timesnot all the data should be enrypted|in many appliations we have a mixture of seret and non-seret data,and it would be nie to have a mode of operation that provides privay for the seret data and authentiity forboth types of data. Thus was born the notion of authentiated-enryption with assoiated-data (AEAD) [16℄.The non-seret data is alled the assoiated data or the header.This doument. In this note we propose a new AEAD sheme, alled EAX. The mehanism is a \on-ventional" AEAD sheme, meaning a method that, using a blok ipher, makes two passes, one aimed atahieving privay and one aimed at ahieving authentiity. Within this spae of onventional shemes, wewant to do as well as possible. Doing well entails issues of eÆieny, simpliity, elegane, patent avoidane,ease of orret use, and provable-seurity guarantees.History and related work. The AEAD sheme known as CCM was reently proposed by Whiting,Housley, and Ferguson [19℄. By speifying a onventional, two-pass AEAD sheme, the CCM authors aimedto avoid the Intelletual Property (IP) assoiated to the new, privay-and-authentiity-melded shemes. ButCCM embodies limitations that have nothing to do with the IP that it works to avoid. A note losely relatedto the urrent one disusses these limitations [18℄. The urrent note was motivated by a desire to �x theissues identi�ed in CCM while staying within its two-pass (patent-avoiding) framework.� Department of Computer Siene & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,California 92093, USA. E-mail: mihir�s.usd.edu WWW: www-se.usd.edu/users/mihir/y Department of Computer Siene, University of California at Davis, Davis, California 95616, USA; and De-partment of Computer Siene, Faulty of Siene, Chiang Mai University, Chiang Mai 50200, Thailand. E-mail:rogaway�s.udavis.edu WWW: www.s.udavis.edu/~rogaway/z Department of Eletrial Engineering and Computer Siene, University of California at Berkeley, Berkeley, California94720, USA. E-mail: daw�s.berkeley.edu WWW: http://www.s.berkeley.edu/~daw/

www.manaraa.com

Algorithm CBCK (M)10 Let M1 � � �Mm M where jMij = n11 C0 0n12 for i 1 to m do13 Ci EK(Mi�Ci�1)14 return Cm
Algorithm CTRNK (M)20 m djM j=ne21 S EK(N) kEK(N+1) k � � � kEK(N+m�1)22 C M � S [�rst jM j bits℄23 return CAlgorithm pad (M ; B;P)30 if jM j 2 fn; 2n; 3n; : : :g31 then return M �! B,32 else return (M k 10n�1�(jMj mod n)) �! P Algorithm OMACK (M)40 L EK(0n); B 2L; P 4L41 return CBCK(pad (M ; B;P))Algorithm OMAC tK (M)50 return OMACK([t℄n kM)Figure 1: Basi building bloks. The blok ipher E : Key � f0; 1gn ! f0; 1gn is �xed and K 2 Key. For CBC,M 2 (f0; 1gn)+. For CTR, M 2 f0; 1g� and N 2 f0; 1gn. For pad, M 2 f0; 1g� and B;P 2 f0; 1gn and �! xors theshorter string into the end of longer one. For OMAC, M 2 f0; 1g� and t 2 [0::2n � 1℄ and the multipliation of a numberby a string L is done in GF(2n).2 PreliminariesAll strings in this note are over the binary alphabet f0; 1g. For L a set of strings and n � 0 a number, welet Ln and L� have their usual meanings. The onatenation of strings X and Y is denoted X kY or simplyXY . The string of length 0, alled the empty string, is denoted ". If X 2 f0; 1g� we let jX j denote its length,in bits. If X 2 f0; 1g� and ` � jX j then the �rst ` bits of X are denoted X [�rst ` bits℄. When X 2 f0; 1gnis a nonempty string and t 2 N is a number we let X+ t be the n-bit string that results from regarding Xas a nonnegative number x (binary notation, most-signi�ant-bit �rst), adding x to t, taking the resultmodulo 2n, and onverting this number bak into an n-bit string. If t 2 [0::2n � 1℄ we let [t℄n denote theenoding of t into an n-bit binary string (msb �rst, lsb last). If X and P are strings then we let X �! P (thexor-at-the-end operator) denote the string of length ` = maxfjX j; jP jg bits that is obtained by prepending��jX j � jP j�� zero-bits to the shorter string and then xoring this with the other string. (In other words, xorthe shorter string into the end of the longer string.) A blok ipher is a funtion E : Key�f0; 1gn ! f0; 1gnwhere Key is a �nite, nonempty set and n � 1 is a number and EK(�) = E(K; �) is a permutation on f0; 1gn.The number n is alled the blok length. Throughout this note we �x suh a blok ipher E.In Figure 1 we de�ne the algorithms CBC, CTR, pad, OMAC (no supersript), and OMAC � (withsupersript). The algorithms CBC (the CBC MAC) and CTR (ounter-mode enryption) are standard.Algorithm pad is used only to de�ne OMAC. Algorithm OMAC [9℄ is a pseudorandom funtion (PRF) thatis a one-key variant of the algorithm XCBC [8℄. Algorithm OMAC � is like OMAC but takes an extraargument, the integer t. This algorithm is a \tweakable" PRF [15℄, tweaked in the most simple way possible.We explain the notation used in the de�nition of OMAC. The value of iL (line 40: i an integer in f2; 4gand L 2 f0; 1gn) is the n-bit string that is obtained by multiplying L by the n-bit string that represents thenumber i. The multipliation is done in the �nite �eld GF(2n), using a anonial polynomial to represent�eld points. For n = 128 we use the polynomial x128+ x7+ x2+ x+1. In that ase, 2L = L<<1 if the �rst bitof L is 0 and 2L = (L<<1)� 012010000111 otherwise, where L<<1 means the left shift of L by one position(the �rst bit vanishing and a zero entering into the last bit). The value of 4L is simply 2(2L).We have made a small modi�ation to the OMAC algorithm as it was originally presented, hanging oneof its two onstants. Spei�ally, the onstant 4 at line 40 was the onstant 1=2 (the multipliative inverseof 2) in the original de�nition of OMAC [9℄. The OMAC authors indiate that they will promulgate thismodi�ation [10℄, whih slightly simpli�es implementations.2

www.manaraa.com

3 EAX GoalsWe wanted a blok-ipher-based, none-using AEAD sheme. It should provide both privay, in the senseof indistinguishability from random bits, and integrity, in the sense of an adversary's inability to produe anew but valid (none, header, iphertext) triple [16℄. Nothing should be assumed about the nones exeptthat they are non-repeating. Seurity must be demonstrated using the standard, provable-seurity approah.The sheme should employ no tool beyond a blok ipher E : Key � f0; 1gn ! f0; 1gn that it is based on.We should assume nothing about E beyond its seurity in the sense of a pseudorandom permutation (PRP).We expet that E will often be instantiated by AES, but we should make no restritions in this diretion(suh as insisting that n = 128). The sheme should be simple and natural (so, in partiular, it should avoidompliated length-annotation). It should be a \onventional" AEAD sheme, making a separate privaypass and authentiity pass, using no known IP.We wanted our AEAD sheme to be exible in the funtionality it provides. It should support arbitrary-length messages: the message spae should be f0; 1g�. The key spae of the AEAD should be the keyspae Key of the underlying blok ipher. We wanted to support nones as long as the blok length1; thatis, the none spae should inlude f0; 1gn. Any tag length � 2 [0::n℄ should be possible, to allow eah userto selet how muh seurity she wants from the integrity guarantees and how many bits she has to pay forthis.2 The above onsiderations imply that the only user-tunable parameters should be E and � .We took on some fairly aggressive performane goals. First, message expansion should be no morethan required: the length of the iphertext (whih, following the onventions of [17℄, exludes the none)should be only � bits more than the length of the plaintext. Implementations should be able to pro�tablypre-proess stati assoiated data; for example, if we have an unhanging header attahed to every paket,authentiating this header should have no signi�ant ost after a single pre-omputation. There should bean eÆient pseudorandom funtion (PRF) diretly aessible through the de�ned interfae of the AEADsheme|as eÆient as other onventional PRFs. Key-setup should be eÆient and all blok-ipher allsshould use the same underlying key, so that we do not inur the ost of key sheduling more than one.For both enryption and deryption, we want to use only the forward diretion of the blok ipher, so thathardware implementations do not need to implement the deryption funtionality of the blok ipher. Thesheme should be on-line for both the plaintext M and the assoiated data H , whih means that one anproess streaming data on-the-y, using onstant memory, not knowing when the stream will stop.EAX ahieves all of goals desribed above.4 EAX AlgorithmFix a blok ipher E : Key � f0; 1gn ! f0; 1gn and a tag length � 2 [0::n℄. These parameters should be�xed at the beginning of a partiular session that will use EAX mode. Typially, the parameters would beagreed to in an authentiated manner between the sender and the reeiver, or they would be �xed for alltime for some partiular appliation. Given these parameters, EAX provides a none-based AEAD shemeEAX[E; � ℄ whose enryption algorithm has signature Key � None � Header � Plaintext ! Ciphertext andwhose deryption algorithm has signature Key�None�Header�Ciphertext! Plaintext[fInvalidg whereNone, Header, Plaintext, and Ciphertext are all f0; 1g�. The EAX algorithm is spei�ed in Figure 2 and apiture illustrating EAX enryption is given in Figure 3.5 DisussionNo enodings. We have avoided any nontrivial enoding of multiple strings into a single one.3 Someother approahes that we onsidered required a PRF to be applied to what was logially a tuple, like(N;H;C). Doing this raises enoding issues we did not want to deal with beause, ultimately, there is no1 Here we will over-ahieve, allowing a none spae of f0; 1g�.2 Note that sine our AEAD sheme is bit-oriented and not byte-oriented, � is the number of bits, not bytes, of the tag.3 One ould view the pre�xing of [t℄n to M in the de�nition of OMAC tK(M) as an enoding, but [t℄n is a onstant, �xed-length string, and the aim here is just to \tweak" the PRF. That is very di�erent from needing to enode an arbitrary-lengthmessage M and an arbitrary-length header H into a single string, for example.3

www.manaraa.com

Algorithm EAX:EnryptN HK (M)10 N OMAC 0K(N)11 H OMAC 1K(H)12 C CTRNK(M)13 C OMAC 2K(C)14 Tag N�C�H15 T Tag [�rst � bits℄16 return C C k T
Algorithm EAX:DeryptN HK (C)20 if jCj < � then return Invalid21 Let C k T C where jT j = �22 N OMAC 0K(N)23 H OMAC 1K(H)24 C OMAC 2K(C)25 Tag 0 N�C�H26 T 0 Tag 0 [�rst � bits℄27 if T 6= T 0 then return Invalid28 M CTRNK(C)29 return MFigure 2: Enryption and deryption under EAX mode. The plaintext is M , the iphertext is C, the key is K, the noneis N , and the header is H. The mode depends on a blok ipher E (that CTR and OMAC impliitly use) and a taglength � .

N

T

OMAC 0K
C

HM
N

HC
CTRK OMAC 1K
OMAC 2K

Figure 3: Enryption under EAX mode. The message is M , the key is K, and the header is H. The iphertext is C k T .
4

www.manaraa.com

CCM EAXFuntionality Authentiated Enryption with AD Authentiated Enryption with ADBuilt from Blok ipher E with 128-bit bloksize Blok ipher E with n-bit bloksizeParameters Blok ipher ETag length � 2 f4; 6; 8; 10; 12; 14; 16gLength of msg length �eld � 2 [2::8℄ Blok ipher ETag length � 2 [0::n℄Message spae Parameterized: 7 hoies: � 2 [2::8℄.Eah possible message spae a sub-set of Byte�, from Byte216�1 toByte<264�1 f0; 1g�None spae Parameterized, with a value of 15��bytes. From 56 bits to 104 bits f0; 1g�Key spae One blok-ipher key One blok-ipher keyCiphertext expansion � bytes � bitsBlok-ipher alls 2 l jMj128 m+l jHj128m+2+ Æ, for Æ 2 f0; 1g 2 l jMjn m+ l jHjn m+ l jNjn mBlok-ipher allswith stati header 2 l jMj128 m+l jHj128m+2+ Æ, for Æ 2 f0; 1g 2 l jMjn m+ l jNjn mKey setup Blok ipher subkeys Blok ipher subkeys3 blok-ipher allsIV requirements Non-repeating none Non-repeating noneParallelizable? No NoOn-line? No YesPreproessing (/msg) Limited (key stream only) Limited (key stream and header only)Memory rqmts Small onstant Small onstantProvable seurity? Yes: redution from blok-ipher'sPRP seurity, bound of �(�2=2128) Yes: redution from blok-ipher'sPRP seurity, bound of �(�2=2n)Patent-enumbered? No NoFigure 4: A omparison of basi harateristis of CCM and EAX.eÆient, ompelling, on-line way to enode multiple strings into a single one. Alternatively, one ould avoidenodings and onsider a new kind of primitive, a multi-argument PRF. But this would be a non-standardtool and we didn't want to use any non-standard tools. All in all, it seemed best to �nd a way to sidestepthe need to do enodings, whih is what we have done.Why not generi omposition? Why have we spei�ed a blok-ipher based (BC-based) AEAD shemeinstead of following the generi-omposition approah of ombining a (privay-only) enryption method anda message authentiation ode? There are reasonable arguments in favor of generi omposition, based onaestheti or arhitetural sensibilities. One an argue that generi omposition better separates oneptuallyindependent elements (privay and authentiity) and, orrespondingly, allows greater implementation exi-bility [6, 14℄. Corretness beomes muh simpler and learer as well. The argument does have validity. Still,BC-based AEAD modes have some important advantages. BC-based AEAD enables improved eÆieny(the strand of work not represented here but found in [11, 17℄) and makes it easier to use a ryptosystemorretly and interoperably|for example, presenting a more diretly useful API for developers. BC-basedAEAD redues the risk that implementors will hoose inseure parameters. It makes it easier for implemen-tors to use a sheme without knowing a lot of ryptography. It saves on key bits and key-setup time, asgeneri-omposition methods invariably require a pair of separate keys. Finally, it was a goal of this work5

www.manaraa.com

to math or beat the harateristi of CCM [19℄, and that meant doing a BC-based AEAD sheme.All of that said, EAX an be viewed as having been derived from a generi-omposition sheme we allEAX2, desribed in Setion 7. Spei�ally, one instantiates the generi-omposition sheme EAX2 withCTR mode (ounter mode) and OMAC, and then ollapses the two keys into one. If one does favor generiomposition, EAX2 is a nie algorithm for it.Why a onventional (two-pass) sheme? Having deided to give a BC-based AEAD sheme, whystik to a onventional (i.e., two-pass) one, avoiding the line of work that starts with [11℄? This hoie isdiÆult to justify for any reason beyond patent-avoidane. We have not attempted to do so.Comparing CCM and EAX. In Figure 4 we ompare some of the properties of CCM[19℄ and EAX. Theount on blok-ipher alls for EAX ignores key-setup osts. By the set Byte we mean f0; 1g8.Other omments. Among the bene�ts of following what is basially an enrypt-then-authentiate approahis that invalid messages an be rejeted with half the work of an authentiate-then-enrypt approah.To obtain a MAC as eÆient as the underlying PRF, use MACK(H) = Enrypt0nHK (").In CCM [19℄ the tag-length parameter is authentiated. We have hosen not to do this beause it isunneessary to ahieve our notion of seurity. Reall that the tag length, like the blok-ipher itself, shouldbe �xed and agreed-to, in an authentiated way, at the beginning of a session. It is a usage error to hangeparameters in the middle of a session. In light of this, authentiating the tag length has no known bene�t.Many appliations won't are if their AE sheme is on-line|they know the length of the message inadvane. Many appliations won't are if they an pre-proess a stati header|perhaps the header is just afew bloks anyway. And so forth. Nothing we have done mandates the use of any novel feature of the providedsheme. The point is to enable it. The de�ning harateristi of a general-purpose mode of operation isthat it is general purpose|we an't antiipate what will be of primary onern to the appliation, and sowe need to try to antiipate the attributes that an appliation may �nd desirable and make sure that thealgorithm itself doesn't stand in the way.Finally, where does the name EAX ome from? It stands for enrypt-then-authentiate-then-translate.Clearly we had problems with the spelling of \translate".6 Intelletual Property StatementThe authors neither have, nor are of aware of, any patents or pending patents relevant to EAX. We do notintend to apply for any patents overing this tehnology. Our work for this note is hereby plaed in thepubli domain. As far as we know, EAX is free and unenumbered for all uses.7 EAX2 AlgorithmThis setion is not neessary to understand or implement EAX, but it is neessary for understanding theproof of EAX as well as the general approah taken for its design. That approah has been to �rst designa generi-omposition sheme, EAX2, and then \ollapse" to a single key for the partiular ase of CTRenryption and OMAC authentiation.EAX2 omposition. Let F : Key1� f0; 1g� ! f0; 1gn be a PRF, where n � 2. Let � = (E ;D) be an IV-based enryption sheme having key spae Key2 and IV spae f0; 1gn. This means that E : Key2�f0; 1gn�f0; 1g� ! f0; 1g� and D : Key2�f0; 1gn�f0; 1g� ! f0; 1g� and Key2 is a set of keys and for every K 2 Key2and N 2 f0; 1gn and M 2 f0; 1g�, if C = ENK (M) then DNK(C) =M . Let � � n be a number. Now given Fand � and � we de�ne an AEAD sheme EAX2[�; F; � ℄ = (EAX2:Enrypt;EAX2:Derypt) as follows. SetF tK(M) = FK([t℄n kM). Set Key = Key1 � Key2. Then the enryption algorithm EAX2:Enrypt : Key �f0; 1g��f0; 1g� ! f0; 1g� and the deryption algorithm EAX2:Derypt : Key�f0; 1g��f0; 1g� ! f0; 1g� [fInvalidg are de�ned in Figure 5 and the former is illustrated in Figure 6. EAX2[�; F; � ℄ is provably seureunder natural assumptions about � and F . See the full version of this paper.6

www.manaraa.com

Algorithm EAX2:EnryptN HK1;K2 (M)10 N F 0K1(N)11 H F 1K1(H)12 C ENK2(M)13 C F 2K1(C)14 Tag N�C�H15 T Tag [�rst � bits℄16 return C C k T
Algorithm EAX2:DeryptN HK1;K2 (C)20 if jCj < � then return Invalid21 Let C k T C where jT j = �22 N F 0K1(N)23 H F 1K1(H)24 C F 2K1(C)25 Tag 0 N�C�H26 T 0 Tag 0 [�rst � bits℄27 if T 6= T 0 then return Invalid28 M DNK2(C)29 return MFigure 5: The generi omposition sheme EAX2[�; F; � ℄. The sheme is build from a PRF F : Key1�f0; 1g� ! f0; 1gnand an IV-based enryption sheme � = (E ;D) having key spae Key2 and message spae f0; 1g�.

N
C

HM
N

HC
T

F 0K1 F 1K1
F 2K1
EK2

Figure 6: Enrypting under EAX2. The plaintext is M and the key is (K1; K2) and the header is H. The iphertext isC k T . By F iK we mean the funtion where F iK(M) = FK([i℄n kM).
7

www.manaraa.com

EAX1 omposition. Let EAX1 be the single-key variant of EAX2 where one insists that Key1 = Key2 andwhere one keys F , E , and D with a single keyK 2 Key = Key1 = Key2. That is, one assoiates to F and �, asabove, the sheme EAX1[�; F; � ℄ that is de�ned as with EAX2 but where the key spae is Key = Key1 = Key2and the one key K keys everything. Notie that EAX[E; � ℄ = EAX1[CTR[E℄;OMAC[E℄; � ℄. This is a usefulway to look at EAX.8 Seurity TheoremEAX is a provably seure AEAD sheme if the underlying blok ipher is a seure pseudorandom permutation(PRP). Proofs have been omitted from the urrent writeup. The full paper, to be released soon, will inludethem.9 AknowledgmentsMihir Bellare's work was funded by NSF grants CCR-0098123 and ANR-0129617, and by an IBM FaultyPartnership Development Award. Phil Rogaway's work was funded by NSF CCR-0208842 and a gift fromCISCO Systems. David Wagner's work was funded by NSF CCR-0113941.Referenes[1℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A onrete seurity treatment of symmetri enryp-tion: Analysis of the DES modes of operation. Proeedings of the 38th Symposium on Foundationsof Computer Siene, IEEE, 1997. Available as http://www-se.usd.edu/users/mihir/papers/sym-en.html[2℄ M. Bellare, R. Gu�erin, and P. Rogaway. XOR MACs: New methods for message authentiation using�nite pseudorandom funtions. Advanes in Cryptology { CRYPTO '95, Leture Notes in ComputerSiene Vol. 963, D. Coppersmith ed., Springer-Verlag, 1995. Available as and http://www-se.usd.edu/users/mihir/papers/xormas.html[3℄ M. Bellare, O. Goldreih, and H. Krawzyk. Stateless evaluation of pseudorandom funtions: Seuritybeyond the birthday barrier. Advanes in Cryptology { CRYPTO '96, Leture Notes in ComputerSiene Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996. Available as http://www-se.usd.edu/users/mihir/papers/otp.html[4℄ M. Bellare, J. Kilian, and P. Rogaway. The seurity of the ipher blok haining message authentiationode. Journal of Computer and System Sienes (JCSS), vol. 61, no. 3, pp. 362{399, De 2000.Available as http://www-se.usd.edu/users/mihir/papers/b.html[5℄ M. Bellare, T. Kohno, and C. Namprempre. Authentiated enryption in SSH: provably �xing the SSHbinary paket protool. Proeedings of the 9th Annual Conferene on Computer and CommuniationsSeurity , ACM, 2002. Available as http://www-se.usd.edu/users/mihir/papers/ssh.html[6℄ M. Bellare and C. Namprempre. Authentiated enryption: Relations among notions and analysisof the generi omposition paradigm. Advanes in Cryptology { ASIACRYPT '00, Leture Notes inComputer Siene Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://www-se.usd.edu/users/mihir/papers/oem.html[7℄ M. Bellare and P. Rogaway. Enode-then-enipher enryption: How to exploit nones or redundanyin plaintexts for eÆient enryption. Advanes in Cryptology { ASIACRYPT '00, Leture Notes inComputer Siene Vol. 1976, T. Okamoto ed., Springer-Verlag, 2000. Available as http://www-se.usd.edu/users/mihir/papers/ee.html
8

www.manaraa.com

[8℄ J. Blak and P. Rogaway. CBC MACs for arbitrary-length messages: The three-key onstrutions.Advanes in Cryptology { CRYPTO '00, Leture Notes in Computer Siene Vol. 1880, M. Bellareed., Springer-Verlag, 2000. Available as http://www.s.udavis.edu/~rogaway/papers/3k.html[9℄ T. Iwata and K. Kurosawa. OMAC: One-key CBC MAC. Fast Software Enryption '03, Leture Notesin Computer Siene Vol. ?? , T. Johansson ed., Springer-Verlag, 2003. Also Cryptology ePrint arhiveReport 2002/180, http://eprint.iar.org/2002/180[10℄ T. Iwata and K. Kurosawa. Personal ommuniations, January 2002.[11℄ C. Jutla. Enryption modes with almost free message integrity. Advanes in Cryptology { EURO-CRYPT '01, Leture Notes in Computer Siene Vol. 2045 , B. P�tzmann ed., Springer-Verlag, 2001.Also Cryptology ePrint arhive Report 2000/039, http://eprint.iar.org/2000/039/[12℄ J. Katz and M. Yung. Unforgeable enryption and adaptively seure modes of operation. Fast SoftwareEnryption '00, Leture Notes in Computer Siene Vol. 1978, B. Shneier ed., Springer-Verlag, 2000.[13℄ J. Kilian and P. Rogaway. The seurity of the ipher blok haining message authentiation ode.Journal of Computer and System Sienes (JCSS), vol. 61, no. 3, pp. 362{399, Deember 2000. Earlierversion in CRYPTO 94.[14℄ H. Krawzyk. The order of enryption and authentiation for proteting ommuniations (or: howSeure is SSL?). Advanes in Cryptology { CRYPTO '01, Leture Notes in Computer SieneVol. 2139, J. Kilian ed., Springer-Verlag, 2001. Also Cryptology ePrint arhive Report 2001/045,http://eprint.iar.org/2001/045[15℄ M. Liskov, R. Rivest, and D. Wagner. Advanes in Cryptology { CRYPTO '02, Leture Notes inComputer Siene, vol. 2442, pp. 31{46. Springer-Verlag, 2002. See www.s.berkeley.edu/�daw[16℄ P. Rogaway. Authentiated-enryption with assoiated-data. Proeedings of the 9th Annual Confer-ene on Computer and Communiations Seurity , ACM, 2002. Available as http://www.s.udavis.edu/~rogaway/papers/ad.html[17℄ P. Rogaway, M. Bellare, J. Blak, and T. Krovetz. OCB: A blok-ipher mode of operation for eÆientauthentiated enryption. Proeedings of the 8th Annual Conferene on Computer and Communia-tions Seurity , ACM, 2001. Available as http://www.s.udavis.edu/~rogaway/papers/ob.htm[18℄ P. Rogaway and D. Wagner. A ritique of CCM. Manusript, February 2003.[19℄ D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). June 2002. Available athttp://sr.nist.gov/enryption/modes/proposedmodes/

9

www.manaraa.com

A Reommended APISome important features of EAX an only be utilized if one aesses EAX funtionality through an appropri-ate user interfae. In this setion we therefore put forward an API that permits (a) inremental enryption,(b) inremental deryption, () authentiity veri�ation without iphertext reovery, and (d) stati headerswith negligible per-message ost. Providing of these features results in an API that is a bit more elaboratethan some programmers may want or need, so we also inlude some simpler, \all-in-one" alls./** We provide two interfaes:* 1. A simple interfae that does not support streaming data.* 2. An inremental interfae that supports streaming data.* See below for doumentation on both.*//** -- How to enrypt, the simplified interfae --* First, all* eax_init()* to setup the key and set the parameters.* Then, for eah paket, all* eax_enrypt()* When all done, all* eax_zeroize()** -- How to derypt, the simplified interfae --* First, all* eax_init()* to setup the key and set the parameters.* Then, for eah paket:* eax_derypt()* When all done, all* eax_zeroize()* It is the aller's responsibility to hek tag validity* by examining the return value of eax_derypt().**//** -- How to enrypt, inrementally --* First, all* eax_init()* to setup the key and set the parameters.* Then, for eah paket, all* eax_provide_none()* {eax_provide_header(), eax_ompute_iphertext()}** eax_ompute_tag()* Here {x,y} means x or y, and z* means any number of iterations of z.* When all done, all* eax_zeroize()** Note that enryption an be done on the fly, and header and message data* may be provided in any order and in arbitrary hunks.** -- How to derypt, inrementally --* First, all* eax_init()* to setup the key and set the parameters.* Then, for eah paket: 10

www.manaraa.com

* eax_provide_none()* {eax_provide_header(), eax_provide_iphertext()}** eax_hek_tag()* eax_ompute_plaintext() // only do this if tag was valid* When all done, all* eax_zeroize()* Note that deryption may be done on the fly, and header and message data* may be provided in any order and in arbitrary hunks.* It is the aller's responsibility to hek tag validity* by examining the return value of eax_hek_tag().**/typedef enum {AES128,AES192,AES256} blok_ipher; /* "standard" iphers */typedef unsigned har byte;typedef void eax_state; /* EAX ontext; opaque *//** Calls ommon to inremental and non-inremental API**//** eax_init** Key and parameter setup to init a EAX ontext data struture.* If you don't know what to pass for t,E, use t=16, E=AES128.*/eax_state *eax_init(byte* Key, // The key, as a string.unsigned int t, // The tag length, in bytes.blok_ipher E // Enumerated that indiates what ipher to use.);/** eax_provide_header** Supply a message header. The header "grows" with eah all* until a eax_provide_header() all is made that follows a* eax_enrypt(), eax_derypt(), eax_provide_plaintext(),* eax_provide_iphertext() or eax_ompute_plaintext() all.* That starts reinitializes the header.*/inteax_provide_header(eax_state *K, // The EAX ontext.byte *H, // The header (assoiated data) (possibly more to ome)unsigned int h // having h bytes);/** eax_zeroize** Session is over; destroy all key material and leanup!*/voideax_zeroize(eax_state *K // The EAX ontext to remove); 11

www.manaraa.com

/** All-in-one, non-inremental interfae**//** eax_enrypt** Enrypt the given message with the given key, none and header.* Speify the header (if nonempty) with eax_provide_header().*/inteax_enrypt(eax_state *K, // The aller provides the EAX ontext,byte* N, // the none andunsigned int n, // its length (in bytes), andbyte* M, // the plaintext andunsigned int m, // its length (in bytes).byte* C, // The m-byte iphertextbyte* T // and the tag T are returned.);/** eax_derypt()** Derypt the given iphertext with the given key, none and header.* Speify the header (if nonempty) with eax_provide_header().* Returns 1 for a valid iphertext, 0 for an invalid iphertext.*/inteax_derypt(eax_state *K, // The aller provides the EAX ontext,byte* N, // the none andunsigned int n, // its length (in bytes), andbyte* C, // the iphertext andunsigned int , // its length (in bytes), and thebyte* T, // tag.byte* P // If valid, return the -byte plaintext.);/** Inremental interfae**//** eax_provide_none** Provide a none. For enryption, do this before alling* eax_ompute_iphertext() and eax_ompute_tag();* for deryption, do this before alling* eax_provide_iphertext(), eax_hek_tag, or eax_ompute_plaintext().*/inteax_provide_none(eax_state *K, // The EAX ontext,byte* N, // the none, and 12

www.manaraa.com

unsigned int n // the length of the none (in bytes).);/** eax_ompute_iphertext** Enrypt a message or a part of a message.* The none needs already to have been* speified by a all to eax_provide_none().*/inteax_ompute_iphertext(// Enrypt (part of) a messageeax_state *K, // Given a EAX ontext Kbyte *M, // and a message M (possibly more to ome)unsigned int m, // having m bytes.byte *C // Return a iphertext body C also having m bytes.);/** eax_ompute_tag** Message and header finished: ompute the authentiation tag that is a part* of the omplete iphertext.*/inteax_ompute_tag(eax_state *K, // Given a EAX ontextbyte *T // ompute the tag T for it.);/** eax_provide_iphertext** Supply the iphertext, or the next piee of iphertext.* This is used to hek for the subsequent authentiity hek eax_hek_tag().*/inteax_provide_iphertext(eax_state *K, // Given a EAX ontextbyte *C, // and a iphertext C (possibly more to ome)unsigned int // having bytes.);/** eax_hek_tag** The none, iphertext and header have all been fully provided; hek if* they are valid for the given tag.* Returns 1 for a valid iphertext, 0 for an invalid iphertext* (in whih ase plaintext/iphertext might be zeroized as well).*/inteax_hek_tag(eax_state *K, // Given a EAX ontext andbyte *T // the tag that aompanied the iphertext.13

www.manaraa.com

);/** eax_ompute_plaintext** Reover the plaintext from the provided iphertext.* A all to eax_provide_none() needs to preede this all.* The aller is responsible for separately heking if the iphertext is valid.* Normally this would be done before omputing the plaintext with* eax_ompute_plaintext().*/inteax_ompute_plaintext(eax_state *K, // Given a EAX ontextbyte *C, // and a iphertext C (possibly more to ome)unsigned int , // having bytes,byte *M // return the orresponding bytes of plaintext.);

14

